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Abstract

In this article, we explore the Poincaré group, identified as the isometry group of

Minkowski space and considered here as a dynamic group. We rely on the work of

J.M. Souriau to trace how, through the action of the group on its momentum space,

quantities such as energy, momentum, and spin emerge as purely geometric entities.

Continuing this line of thought, we integrate the antichronous movements resulting

from the complete group. The group is then extended to a five-dimensional configura-

tion, interpreted as a geometric manifestation of the existence of electric charges and

the symmetry between matter and antimatter. This leads us to the formulation of the

Janus group, incorporating CPT symmetry. Finally, we demonstrate that these devel-

opments represent the beginnings of a geometric interpretation of Andrei Sakharov’s

model, which proposes to locate primordial antimatter in an antichronous sheet of the

universe, thus offering an interpretation of the baryonic asymmetry of the universe in

Cosmology.
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1 The physico-mathematical foundations of this approach

The French mathematician Jean-Marie Souriau, who passed away in 2012, used to say, ”A

little mathematics takes you away from physics, but a lot of it brings you back”. In his work,

he provided an example of such a statement by revealing the physical quantities like energy,

momentum, and spin as objects of pure geometry, representing a brilliant application of

symplectic geometry. He is one of the few who excelled both as a high-level mathematician

and an excellent physicist. In his work Structure of Dynamical Systems [23] (today, we

prefer to use the term symplectic groups), he constructs the action of the Poincaré group on

the dual of its Lie algebra, known as the momentum space. It is a vector space of the same

dimension as the group, which is 10. He then organizes its components according to:

� A scalar, energy

� A 3-vector momentum

� A 3-vector spin

� A 3-vector to which he gives the name ”passage”

These components of momentum then define motions in Minkowski space, where the

Poincaré group is the isometry group. These motions are divided into classes, and Souriau

establishes a connection between particles and classes of motions. He shows that the com-

ponents of the 3-vector passage can be canceled by choosing a coordinate system that ac-

companies the particle in its motion. The remaining physical quantities are the first three.

Their emergence can also be interpreted as an application of Noether’s theorem:

� The scalar energy is then associated with the subgroup of temporal translations.

� The 3-vector momentum with the subgroup of spatial translations.

� The 3-vector spin (unquantized) with the Lorentz subgroup, around which the Poincaré

group is constructed.

But at the end of this approach, a surprise awaited the physicist. The Lorentz group is

defined by:

Lor := {L ∈ GL(4,R), τ(L)L = I4} .

with:

τ(L) := I1,3L
T I1,3 , I1,k :=

(
−1 0

0 Ik

)
(k ∈ N).

We extend the map τ to vectors of R4, by setting for all X ∈ R4:

τ(X) := XT I1,3

The Lorentz group has four connected components (see [5], [17] and [18]):

� Lorn is the neutral component (its restricted subgroup), does not invert either space

or time i.e. defined by:

Lorn := {L ∈ Lor, det(L) = 1 ∧ [L]00 ≥ 1}
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� Lors inverts space i.e. defined by:

Lors := {L ∈ Lor, det(L) = −1 ∧ [L]00 ≥ 1}

� Lort inverts time but not space i.e. defined by:

Lort := {L ∈ Lor, det(L) = 1 ∧ [L]00 ≤ −1}

� Lorst inverts both space and time i.e. defined by:

Lorst := {L ∈ Lor, det(L) = −1 ∧ [L]00 ≤ −1}

We have:

Lor = Lorn ⊔ Lors ⊔ Lort ⊔ Lorst. (1)

The first two components are grouped together to form the subgroup called ”orthochronous”:

Loro = Lorn ⊔ Lors (2)

It includes P-symmetry, which poses no problem for physicists who know that there are

photons of ”right” and ”left” helicity whose motions are derived from this symmetry. This

corresponds to the phenomenon of the polarization of light.

The last two components form the subset ”retrochronous” or ”antichronous”, whose

components invert time:

Lora = Lort ⊔ Lorst (3)

We have:

Lor = Loro ⊔ Lora (4)

The Poincaré group is defined by:

Poin :=

{(
L D

0 1

)
, L ∈ Lor ∧ D ∈ R4

}
, (5)

it inherits the properties of the Lorentz group and thus has four connected components.

We then distinguish the subgroup of the complete Poincaré group, constructed from the

orthochronous components of the Lorentz group. And we define all components (like Lorentz

group):

∀α ∈ {n, s, t, st, o, a}, Poinα :=

{(
Lα D

0 1

)
, Lα ∈ Lorα ∧ D ∈ R4

}
. (6)

We have the same decomposition like (1), (2), (3) and (4).

The classification of motions yields two classes corresponding to the movements of pho-

tons and particles with a positive mass m. Souriau summarizes his study by providing a
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summary of the group’s action on its momentum (see [23] chapter 13).

We can define the moment matrix M and the stress–energy vector P as follows:

M :=

(
0 gT

g j(ℓ)

)
, P :=

(
E

p

)

with ℓ the angular momentum of M , g the relativist barycenter of M , p the linear momen-

tum of P , and E the energy of P .

The action is written (see [23] equation 13.107) for all L ∈ Lor :

M ′ = LMτ(L) + Cτ(P )τ(L)− CLPτ(C) (7)

P ′ = LP (8)

We have:

Lort = −Lors Lorst = −Lorn (9)

Then, it is possible to write the complete Poincaré group as:

Poin :=

{(
λLo D

0 1

)
, Lo ∈ Loro ∧ D ∈ R4 ∧ λ ∈ {±1}

}
. (10)

The action of the complete group is then written as follows for all L := λLo ∈ Lor:

M ′ = LoMτ(Lo) + λCτ(P )τ(Lo)− CLPτ(C)

P ′ = λLoP

It’s then observed that the retrochronous components reverse the energy and, conse-

quently, the mass, as noted by J.M. Souriau ((14.67) of page 198 [23]).

In the past, we have seen an example where P. Dirac suggested the use of an electric

charge symmetry. The existence of particles with opposite electric charges was thus directly

implied by an extension of the theory. This involved postulating the existence of positrons.

Fortunately, the existence of such particles was quickly confirmed by C.A. Anderson’s ob-

servations1, which earned him the Nobel Prize in 1936.

We are in 1970. J.M. Souriau’s theoretical framework raised the possibility of particles

with negative energy, which were categorized into two classes:

� Particles endowed with a negative mass m

� Photons endowed with negative energy.

In conclusion, the author indicated potential measures to circumvent the emergence

of particles with negative mass, one of which was to decide that only the orthochronous

components of the Poincaré group should pertain to the realm of physics.

1To be precise, this observation did not follow P. Dirac’s deduction in the sense that, in 1923, the Russian
D. Skobeltzyn was the first to make this observation.
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2 When the theory of dynamic groups illuminates the

traveled path

The application of the coadjoint action of a symplectic group on the dual of its Lie algebra,

initiated by the mathematician Jean-Marie Souriau, has shed light on specific aspects of the

approach followed by physics. The orbit method is due to Kirillov ([4], [8], [6], [7], [13], [14],

[16], [24], [27] and [28]).

Thus, the restricted Lorentz symplectic group, limited to its two orthochrone compo-

nents, translates, through the invariance properties that result from it, the aspects of special

relativity. In 1970, J-M Souriau established that the analysis of the components of its mo-

ment makes it possible to shed light on the geometric nature of a spin (not quantized):

see [23] and [22]. He uses for this purpose symplectic methods ([11], [9], [25] and [26]). In

the theory of symplectic groups, we show a classification in terms of movements. At this

stage, the action of these elements reversing space finds its illustration in the phenomenon

of polarization of light, where any ”right” photon can be converted into a ”left” photon.

By operating the product of this group by that of the spatio-temporal translations,

we obtain the restricted Poincaré symplectic group, always limited to its two orthochrone

components. In its moment, we first find the energy related to the subgroup of temporal

translations. Then the momentum, linked to the spatial translations, the two being linked

by the invariance of the modulus of the energy-momentum four-vector under the action of

the Lorentz group.

By adding a translation along a fifth dimension to the restricted Poincaré group, we

form a Lie group to which we will give the name Restricted Kaluza Group ([1], [2], [3], [12],

[15]). This group is not the 15-dimensional Kaluza group associated with a 5-dimensional

Lorentzian manifold but a new 11-dimensional group, including 5-dimensional space-time

translation. This new dimension endows the momentum with an additional scalar that can

be identified with the electric charge q, which may be positive, negative, or zero, and is

still not quantized. We then bring out the geometric translation according to a scalar ϕ

due to endowing the masses with an invariant electric charge. Then, by bringing in a new

symmetry reflecting the inversion of the fifth dimension, synonymous with an inversion of

the scalar from q to −q, we double the number of its connected components from 2 to 4.

The action on the moment then links this new symmetry to the inversion of the electric

charge q. We thus deduce the geometric modeling of charge conjugation or C-Symmetry,

which translates the matter-antimatter symmetry introduced by Dirac. It’s then logical to

name this new extension, the Restricted Janus Group.

By introducing a new symmetry to the previous group, which we describe asT-Symmetry

and which converts matter into antimatter with negative mass – a concept we could name

antimatter in the Feynman sense – we build the Janus Symplectic Group. Thus, we double

the number of connected components from four to eight, grouped into two subsets: ”Or-

thochronous”, conserving time and energy properties, and ”Antichronous”, reversing time

and energy. Therefore, we bring forth the geometric translation of endowing masses with
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an invariant electric charge. As the Jean-Marie Souriau demonstrated as early as 1970, a

pioneer in the theory of symplectic groups ([23], [10], [22]), this approach has allowed key

elements, which have marked the progress of relativistic physics, to be given a purely geo-

metric nature.

In relation to the world of physics, wouldn’t the role of mathematics be to illuminate

the path traveled? Conversely, could it be possible that the exploration of new symmetries,

accompanying this decoding using symplectic groups, contains more than what we thought

we put into it? That it could designate new paths to follow?

This is what we will consider with the Janus Symplectic Group with charge symme-

try, by integrating the antichronous components of the Lorentz group, resulting from its

simple axiomatic definition, with the obvious repercussions on the Poincaré group and its

extensions.

3 Janus Symplectic Group

Let T̃ := I1,3, P̃ := −T̃ and:

∀λ, ν ∈ {0, 1}, Lor
(
P̃

ν
T̃

λ
)
:=
{
LnP̃

ν
T̃

λ
, Ln ∈ Lorn

}
.

Then, there are 4 connected components of Lor, given by2

Lorn = Lor
(
P̃

0
T̃

0
)

Lors = Lor
(
P̃

1
T̃

0
)

Lort = Lor
(
P̃

0
T̃

1
)

Lorst = Lor
(
P̃

1
T̃

1
)

and we have the decomposition:

Lor =
⊔

ν,λ∈{0,1}

Lor
(
P̃

ν
T̃

λ
)

(11)

Then, we define the Janus symplectic group.

Definition 3.1. The Janus symplectic group is defined as the subgroup of GL(6,R):

J an :=


L 0 D

0 (−1)η ϕ

0 0 1

 , η ∈ {0, 1} ∧ ϕ ∈ R ∧ L ∈ Lor ∧ D ∈ R4


The Janus symplectic group is therefore a subgroup of the group of isometries in dimen-

2Equalities are shown by double inclusion. For example, let’s demonstrate that Lors = Lor
(
P̃

1
T̃

0
)
.

Take L ∈ Lors (det(L) = −1 et [L]00 ≥ 1). Then we have det(LP̃) = −1 and [LP̃]00 ≥ 1 i.e., we have

Ln := LP̃ ∈ Lorn. Since P̃
−1

= P̃, we can conclude that L = LnP̃ ∈ Lor
(
P̃

1
T̃

0
)
. The inclusion in the

other direction is trivial.
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sion 5 given by3:

Aff(O(1, 4)) :=

{(
L D′

0 1

)
, L ∈ O(1, 4) ∧ D′ ∈ R5

}

with τ1,4(L) := I1,4L
T I1,4 and O(1, 4) := {L ∈ GL(5,R), τ1,4(L)L = I5}. The elements of

Aff(O(1, 4)) are the elements which preserve the distance between two events (pentavectors)

X := (t, x, y, z, ξ) and X ′ := (t′, x′, y′, z′, ξ′) given by:

d(X,X ′) := c2(t− t′)2 − (x− x′)2 − (y − y′)2 − (z − z′)2 − (ξ − ξ′)2

This fifth dimension is of space type (we note the variable ξ). Each dimension is therefore

associated with a symmetry, there are three types of symetries:

• the T-symmetry ;

• the Px-symmetry, Py-symmetry, Pz-symmetry grouped together what we call the P-

symmetry ;

• the ξ-symmetry corresponding to the C-symmetry (the charge conjugation).

This space of dimension 5 is a Minkowski metric space to which we have added one dimen-

sion, it has the metric I1,4.

We also define the restricted Janus group is the subgroup of J an given by:

J ann :=


Ln 0 D

0 1 ϕ

0 0 1

 , ϕ ∈ R ∧ Ln ∈ Lorn ∧ D ∈ R4


Let:

C :=

I4 0 0

0 −1 0

0 0 1

 , P :=

(
P̃ 0

0 I2

)
, T :=

(
T̃ 0

0 I2

)
.

We have:

∀λ, η, ν ∈ {0, 1},

Ln 0 D

0 1 ϕ

0 0 1

CηPνTλ =

LnP̃
ν
T̃

λ
0 D

0 (−1)η ϕ

0 0 1


and therefore by equation (11):

J an =


LnP̃

ν
T̃

λ
0 D

0 (−1)η ϕ

0 0 1

 , λ, η, ν ∈ {0, 1} ∧ ϕ ∈ R ∧ Ln ∈ Lorn ∧ D ∈ R4

 .

3Aff(O(1, 4)) is the affine group associated with O(1, 4), it is also defined by the semi-direct product
Aff(O(1, 4)) := O(1, 4) ⋉ R5. We can also define the symplectic Janus group as being the affine group
associated with the subgroup of O(1, 4) given by:

Elec :=

{(
L 0
0 (−1)η

)
, η ∈ {0, 1} ∧ L ∈ Lor

}
called the symplectic electric group and we have J an := Aff(Elec).
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Definition 3.2. (i) The CPT-group is the subgroup K of J an of order 8 generated by

C, P and T ie:

K :=
{
CηPνTλ, η, ν, λ ∈ {0, 1}

}
= {I6,T,P,PT,C,CT,CP,CPT} .

(ii) For all X ∈ K, the X-component of J an is:

J an (X) := {JX, J ∈ J ann} .

Thus, we have:

J an
(
CηPνTλ

)
=


LnP̃

ν
T̃

λ
0 D

0 (−1)η ϕ

0 0 1

 , ϕ ∈ R ∧ Ln ∈ Lorn ∧ D ∈ R4

 .

These 8 components are the 8 connected components of J an, we have the decomposition:

J an =
⊔

X∈K

J an (X) =
⊔

η,ν,λ∈{0,1}

J an
(
CηPνTλ

)
.

The group Lor is the Lie group of dimension 6 and its Lie algebra is:

lor :=A(1, 3) := {Λ ∈ M(4,R), τ1,3(Λ) = −Λ}

Then, the group J an is a Lie group of dimension 11 and its Lie algebra is:

jan =


Λ 0 Γ

0 0 ε

0 0 0

 , Λ ∈ A(1, 3) ∧ Γ ∈ R4 ∧ ε ∈ R

 .

We have two caracterisations4:

(
R5
)∗

=

{(
Γ

ε

)
7−→ −

(
PT q

)
I1,4

(
Γ

ε

)
= −τ(P )Γ− qε,

(
P

q

)
∈ R5

}

A(1, 3)∗ =

{
Λ 7−→ −1

2
Tr(MΛ), M ∈ A(1, 3)

}
Then, we have:

jan∗ =


{

M P q
}
:

Λ 0 Γ

0 0 ε

0 0 0

 7−→ −1

2
Tr(MΛ)− τ(P )Γ− qε, M ∈ A(1, 3) ∧ P ∈ R4 ∧ q ∈ R

 5.

The action of the group J an on jan∗ is defined by the coadjoint representation i.e., for

4For all β ∈ R∗, the application Φβ which to M ∈ A(1, 3) associates the linear form Λ 7−→ βTr(MΛ) is
an isomorphism of A(1, 3) to A(1, 3)∗. Taking {Akl := −Ekl + [I1,3]ll[I1,3]kkElk, k, l ∈ {1, . . . , 4}, k < l}
the canonical basis of A(1, 3), we have Φ−1/2(Akl)(Akl) = 1, hence the choice of β := −1/2.

5The elements of jan∗ are called torsors.
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any a ∈ J an and any µ ∈ jan∗, we denote this action by:

a • µ := Ad∗a(µ).

with

Ad∗ : J an −→ Aut(jan∗)

a 7−→ Ad∗a : µ 7−→
(
Z 7−→ µ

(
a−1Za

))
Proposition 3.1. Let:

a :=

L 0 D

0 (−1)η ϕ

0 0 1

 ∈ J an ,
{

M P q
}
∈ jan∗.

We have:

a •
{

M P q
}

=
{

LMτ(L) +Dτ(P )τ(L)− LPτ(D) LP (−1)ηq
}
.

Proof. We have:

(
a •
{

M P q
})Λ 0 Γ

0 0 ε

0 0 0


=
{

M P q
}a−1

Λ 0 Γ

0 0 ε

0 0 0

 a


=
{

M P q
}

τ(L) 0 −τ(L)D

0 (−1)η (−1)η+1ϕ

0 0 1


Λ 0 Γ

0 0 ε

0 0 0


L 0 D

0 (−1)η ϕ

0 0 1




=
{

M P q
}τ(L)ΛL 0 τ(L)(ΛD + Γ)

0 0 (−1)ηε

0 0 0


=− 1

2
Tr (Mτ(L)ΛL)− τ(P )τ(L)(ΛD + Γ)− (−1)ηqε

=− 1

2
Tr [(LMτ(L) + 2Dτ(P )τ(L)) Λ]− τ(LP )Γ− (−1)ηqε

=− 1

2
Tr [(LMτ(L) +Dτ(P )τ(L)− LPτ(D)) Λ]− τ(LP )Γ− (−1)ηqε

=
{

LMτ(L) +Dτ(P )τ(L)− LPτ(D) LP (−1)ηq
}Λ 0 Γ

0 0 ε

0 0 0
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To describe the Lie algebra of J an, we can also use the isomorphism of Lie algebras6:

j : (R3,∧) −→ (A(3), [ , ])x

y

z

 7−→

 0 −z y

z 0 −x

−y x 0


.

with ∧ the cross product on R3 and A(3) the vector space of antisymmetric matrices of size

3. Then, we have:

jan =


Λ 0 Γ

0 0 ε

0 0 0

 , Λ ∈ A(1, 3) ∧ Γ ∈ R4 ∧ ε ∈ R

 =



0 βT 0 v

β j(w) 0 γ

0 0 0 ε

0 0 0 0

 , β, w, γ ∈ R3 ∧ v, ε ∈ R

 .

Therefore, for all
{

M P q
}
∈ jan∗, there are unique ℓ, g, p ∈ R3 and E, q ∈ R such as:

{
M P q

}Λ 0 Γ

0 0 ε

0 0 0

 =

{ (
0 gT

g j(ℓ)

) (
E

p

)
q

}
0 βT 0 v

β j(w) 0 γ

0 0 0 ε

0 0 0 0


= −1

2
Tr

((
0 gT

g j(ℓ)

)(
0 βT

β j(w)

))
−
(
E pT

)
I1,3

(
v

γ

)
− qε

= ℓTw − gTβ + pT γ − Ev − qε

We denote this last equality as:

{
ℓ g p E q

}
0 βT 0 v

β j(w) 0 γ

0 0 0 ε

0 0 0 0

 .

The dual jan∗ has the following descriptions:
{

ℓ g p E q
}
:


0 βT 0 v

β j(w) 0 γ

0 0 0 ε

0 0 0 0

 7−→ ℓTw − gTβ + pT γ − Ev − qε, ℓ, g, p ∈ R3 ∧ E, q ∈ R

 .

Definition 3.3. Let

µ :=
{

M P q
}
:=
{

l g p E q
}
∈ jan∗

with relations:

M =

(
0 gT

g j(ℓ)

)
, P =

(
E

p

)
.

6We have for all u, v ∈ R3: u ∧ v = j(u)(v) and j(u ∧ v) = [j(u), j(v)] = j(u)j(v)− j(v)j(u).
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(i) The matrix M := M(µ) ∈ A(1, 3) is called the moment matrix associated with µ.

The vector ℓ := ℓ(µ) ∈ R3 is called the angular momentum of M , and the vector

g := g(µ) ∈ R3 is the relativist barycenter of M .

(ii) (a) The vector P := P (µ) ∈ R4 is called the stress–energy vector associated with µ.

The vector p := p(µ) ∈ R3 is called the linear momentum of P , and the scalar

E := E(µ) ∈ R is called the energy of P .

(b) The first Casimir number associated with µ is defined by:

C1 := C1(µ) := PT I1,3P = E2 − p2.

(c) The mass associated to µ is defined by :

m := m(µ) := sign(E)
√
C1 = sign(E)

√
E2 − p2.

(iii) The scalar q := q(µ) ∈ R is called the electric charge associated with µ.

We deduce a simple expression of the action of the CPT-group K on the torsors of jan∗.

Corollary 3.2. Let
{

l g p E q
}
∈ jan∗. For all λ, η, ν ∈ {0, 1}, we have:

(CηPνTλ) •
{

l g p E q
}
=
{

l (−1)λ+νg (−1)νp (−1)λE (−1)ηq
}
.

Proof. We apply the Proposition 3.1 with a := CηPνTλ:

(CηPνTλ) •
{

l g p E q
}
= (CηPνTλ) •

{ (
0 gT

g j(ℓ)

) (
E

p

)
q

}

=

{
P̃

ν
T̃

λ

(
0 gT

g j(ℓ)

)
T̃

λ
P̃

ν
I1,3T̃

λ
P̃

ν
I1,3

(
E

p

)
(−1)ηq

}

=

{ (
0 (−1)λ+νgT

(−1)λ+νg j(ℓ)

) (
(−1)λE

(−1)νp

)
(−1)ηq

}
=
{

l (−1)λ+νg (−1)νp (−1)λE (−1)ηq
}

So we have:

C •
{

l g p E q
}
=
{

l g p E −q
}

P •
{

l g p E q
}
=
{

l −g −p E q
}

T •
{

l g p E q
}
=
{

l −g p −E q
}
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Corollary 3.3. Let µ ∈ jan∗. For all λ, η, ν ∈ {0, 1}, we have:

P
(
(CηPνTλ) • µ

)
= P̃

ν
T̃

λ
P (µ)

C1

(
(CηPνTλ) • µ

)
= C1(µ)

m
(
(CηPνTλ) • µ

)
= (−1)λm(µ)

Proof. Let µ :=
{

l g p E q
}
∈ jan∗. We have for the stress-energy tensor:

P (P • µ) = P
({

l −g −p E q
})

=

(
E

−p

)
= P̃P (µ)

P (T • µ) = P
({

l −g p −E q
})

=

(
−E

p

)
= T̃P (µ)

P (P • µ) = P
({

l g p E −q
})

=

(
E

p

)
= P (µ)

for the first Casimir number:

C1

(
(CηPνTλ) • µ

)
= P (µ)T T̃

λ
P̃

ν
I1,3P̃

ν
P̃

λ
P (µ) = P (µ)T I1,3P (µ) = C1(µ)

for the mass:

m
(
(CηPνTλ) • µ

)
= sign

(
E
(
(CηPνTλ) • µ

))√
C1

(
(CηPνTλ) • µ

)
= sign((−1)λE)

√
C1(µ) = (−1)λm(µ)

Therefore the elements variable by these actions are:

P (P • µ) = P̃P (µ) P (T • µ) = T̃P (µ) m (T • µ) = −m(µ) (12)

and we have the following table:
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Figure 1: This table lists the 8 values of µ′ := (CηPνTλ) •
{

l g p E q
}

for all

λ, η, ν ∈ {0, 1}.

4 Discussion & Conclusion

In this paper, we have performed a double extension of the restricted Poincaré group limited

to its orthochronous components, which are classically used in physics. This extension also

includes the transition from the four-dimensional Minkowski spacetime to a new space of the

same dimension, to which we have added a translation along an additional fifth dimension

to form a new Lie group. The existence of this additional subgroup results in the invari-

ance of a scalar, identified as the electric charge. A symmetry is introduced along this fifth

dimension, and we have shown that this leads to the inversion of the electric charge. This

provides a geometric representation of the symmetry between matter and antimatter.

In 1905, physics made a spectacular leap forward when Albert Einstein introduced the

theory of special relativity. This theory was based on the idea that time, multiplied by a

constant c with the dimensions of speed, specifically the speed of light, became a coordinate

similar to the other three spatial dimensions, integrated into the geometry of Minkowski

space. In 1915, with the publication of his field equation, Einstein was able to explain phe-

nomena such as the precession of Mercury’s perihelion and the deflection of light by the sun.
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At that time, the concept of an expanding cosmos was unthinkable, yet it was confirmed

by the observations of Edwin Hubble and the theories of Friedmann, thus establishing the

foundations of the Big Bang theory. This theory revealed that the universe had experienced,

in its distant past, conditions of extreme density and temperature.

Simultaneously, quantum mechanics provided a new approach to deciphering microphys-

ical phenomena, with Paul Dirac soon introducing the concept of antimatter. According to

this theory, when the universe was one thousandth of a second old, it consisted of equal parts

matter and antimatter, coexisting with short-wavelength photons. A balance was formed

where the annihilations of matter-antimatter pairs were compensated by the creation of new

pairs from gamma photons. However, as the universe expanded, these annihilations should

have prevailed, logically leading to the total disappearance of matter. In 1967, the discovery

of the cosmic microwave background at 2.7K both homogeneous and isotropic, reinforced

the Big Bang theory, identifying these photons as those produced by matter-antimatter an-

nihilations, whose wavelengths had stretched along with the expansion of the universe to

centimeter dimensions.

However, this discovery did not explain why one in a million matter particles had sur-

vived annihilation, nor why its antimatter counterpart, described as primordial, remained

unobserved. Initially, it was assumed that half of the observed galaxies could be composed

of antimatter. But this environment quickly proved to be globally collisional on the scale of

the age of the universe. In such a context, a single collision between a matter galaxy and

an antimatter galaxy would have produced a detectable gamma-ray flux by our observation

instruments. The absence of such detection led to the conclusion that, for an unknown

reason, half of the universe had been lost.

Beyond this half-century, no model had been proposed to explain such a paradox until

1967, when Sakharov suggested that in what should be considered one of the two sheets

of a twin universe, linked by the initial singularity of the Big Bang (Figure 2), the rate of

production of baryons from quarks was lower than that of the production of antibaryons

from antiquarks. Our observable universe would thus be composed, in addition to many

photons from annihilations, of baryons and free antiquarks.

14



Figure 2: Sakharov Cosmological Model

For symmetry reasons, Sakharov postulated the existence of a twin universe where the

situation was symmetrical: this universe contained photons from annihilations, as well as

antibaryons and free quarks. For more than half a century, this model has remained the

only contender. Sakharov also envisaged that this second universe would be symmetric

to ours with PT symmetry, that is, enantiomorphic and with an opposing arrow of time.

This twin universe would also be composed of antimatter, which suggests a C symmetry.

([19],[20],[21]).

In summary, these two universes are symmetric according to the CPT transformation.

The Janus model, based on this group-theoretical approach, represents this CPT symmetry.

Indeed, according to the construction around the complete Poincaré group, which includes

its antichronous components, the time symmetry T automatically induces charge symmetry

C. In 1970, J.M. Souriau demonstrated through his theory of dynamical groups ([23]) that

T symmetry led to the inversion of energy (see equation (14.67) of [23]) and mass (see equa-

tion (14.24) of [23]). Thus, according to the present work, which represents an extension

of this theory, Sakharov’s universe would include photons with negative energy, antimatter

particles with negative mass, and a corresponding residue of quarks with negative energy.

In the Sakharov model, the particles of the two universes do not interact. Whereas in the

Janus model, these two sheets of the universe are folded onto each other, forming a structure

akin to a covering (Figure 3).
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Figure 3: Janus Cosmological Model

Particles with opposite masses could then interact gravitationally. A subsequent article

will present the system of coupled field equations that models this interaction. Currently,

the standard model of cosmology fails to explain the recent data from the Hubble and

James Webb space telescopes, creating a significant crisis among experts. The Janus model

provides a solution to this crisis, requiring a change in geometric paradigm.
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unitaires de sl3(r). Acta Math., 1983.

[25] G. M. Tuynman. The lagrangean in symplectic mechanics. In Proceedings of The

Blekinge University International Conference in the honor of Jean Leray, 1999.

[26] G. M. Tuynman. Supermanifolds and supergroups. Basic theory, volume 570 of Math-

ematics and its Applications. Kluwer Academic Publishers, Dordrecht, 2004.

[27] D. Vogan. Noncommutative algebras and unitary representations. American Mathe-

matical Society, 1988.

[28] D. Vogan. The method of coadjoint orbits for real reductive groups, volume 8 of Rep-

resentation Theory of Lie Groups. American Mathematical Society, Providence, RI,

1999.

17


	The physico-mathematical foundations of this approach
	When the theory of dynamic groups illuminates the traveled path
	Janus Symplectic Group
	Discussion & Conclusion

