

Energy gain of runaway electrons in vertical disruptions

J. Riemann^{*a*}, H. M. Smith^{*a,b*}, P. Helander^{*a*}

^a Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald, Germany

^b Max-Planck-Institut für Sonnensystemforschung, D-37191 Katlenburg-Lindau, Germany

- introduction
- energy conversion qualitative picture
- 2D model setup and equations
- numerical results
- summary

Introduction (1)

ENDELSTEIN 7-X

- runaway electrons (REs):
 - electrons accelerated to relativistic speeds
 - energy gain exceeds energy loss
 - experience non-monotonic friction force $\mathbf{F}(v)$
- RE formation mechanisms:
 - primary: Dreicer, hot-tail, γ (not discussed here)
 - secondary: avalanche for $E > E_c$ (important here)
 - $E_{
 m c}$ critical field strength (required to maintain current of REs)
 - REs likely to be generated during tokamak disruptions
- REs are a possible threat to future tokamaks:
 - strongly localized beams with high energies ($\sim {\rm MeV})$
 - deep penetration of materials ($\sim {\rm cm})$
 - more REs for large devices expected ($G_{\rm RE} \sim \exp 2.5 I_{\rm P}({\rm MA})$)

🕺 Example: REs in Tore Supra

investigation of REs on Tore Supra:

- "slowing-down of REs takes time ... "
- active current and position control
- \bullet RE plateaus controlled for some seconds
- massive gas injection applied
- part of disruption mitigation strategy
- sudden RE current collapses observed

F. Saint-Laurent et al.

Control of runaway electron heat loads on Tore Supra 38th EPS conference, Strasbourg (2011)

60 kA runaway electron beam striking CFC wall in Tore Supra

courtesy of F. Saint-Laurent

Introduction (2)

ENDEL STEIN 7-X

IPP

- theoretical & experimental studies
 - $-\operatorname{RE}$ formation and properties
 - energy conversion by REs (*Putvinski et al.*, *Loarte et al.*)
 - RE loss mechanisms
- strategies for RE suppression or mitigation wanted
 - collisional slowing down (killer-pellets, massive gas injection, ...)
 - drift orbit losses through RMPs \implies G. Papp (O-26)
 - **RE current control** (*Saint-Laurent et al.*)
- RE control closely connected to disruption control

\implies REs will be an important issue for ITER operation!

Possible Conditions after Current Quench in ITER

- \bullet population of REs with $\sim 10\,{\rm MeV}$
- \bullet current conversion of up to $\sim 2/3\,I_{\rm P}^0$ possible
 - initial RE current $I_{\rm RE} \sim 10 \, {\rm MA}$
 - initial RE density $n_{\rm RE} \sim 10^{16} \, {\rm m}^{-3}$ ($N_{\rm RE} \sim 10^{19}$)
- \bullet background plasma with $T\sim 5\,\mathrm{eV}$
 - determines free electron density $n_{\rm e} \sim 10^{21}\,{\rm m}^{-3}$
 - no significant contribution to current (high resistivity)
- initial kinetic energy of REs $W_{\rm RE}^0 \sim 20 \,{\rm MJ}$
 - small compared to magnetic field energy!

$$\frac{W_{\rm RE}^0}{W_{\rm m}^{\rm pol}} \sim \frac{(\gamma - 1)I_{\rm A}}{I_{\rm P}^0} \sim 0.03$$

• instabilities causing the plasma to move toward the wall

Energy Conversion - Qualitative Picture

what will happen:

- plasma drifts toward walls and induces eddy currents
- back reaction on plasma controls motion
- plasma hits wall and is getting scraped off
- rapid current loss causes strong toroidal fields driving REs
- amplification of REs at cost of poloidal field energy
- energy of poloidal field dissipated in plasma and walls

- Putvinski et al., Plas. Phys. Contr. Fusion **39** (1997)
 - poloidal magnetic field is reservoir of free energy
 - strong amplification of RE energy during vertical drift possible
 - $-\,1\text{D}$ model for straight plasma cylinder enclosed by cylindrical wall
 - highest RE wall loads predicted for slow disruptions
- Loarte et al., Nucl. Fusion **51** 073004 (2011)
 - experimental evidence for RE energy conversion on JET
 - -1D numerical simulation results
- next step: 2D modelling (axisymmetric)
 - plasma with circular cross section
 - self-consistent vertical motion of plasma
 - resistive diffusion in conducting structures external to plasma

2D Computational Model Setup

domain with objects

Model assumptions:

- $I_{\rm P}^0$ carried by REs exclusively
- circular plasma cross section
- large aspect ratio
- up-down symmetric objects
- up-down symmetric PF1 coil current ($\uparrow\uparrow I_{\rm P}$)
- no other PF coil/CSO currents applied
- vertical motion only (plasma rest frame) Numerics:
 - FV ansatz and Newton's method
 - $\psi = 0$ at $R = \varepsilon$, $\nabla \psi \cdot d\mathbf{S} = 0$ elsewhere
 - non-equidistant grid (finest at plasma center)

VENDELSTEIN 7-X 2D-Mathematical Model

• magnetic field in axisymmetric geometry

$$\mathbf{B} = I(\psi, t)\nabla\varphi + \nabla\varphi \times \nabla\psi$$

 $\psi(R,z,t)\sim {\rm poloidal}$ magnetic flux

• toroidal current density (runaway + Ohmic)

$$J_{\varphi} = J_{\rm r} + \sigma E_{\varphi} = \frac{\Delta^* \psi}{\mu_0 R} \qquad \left(\Delta^* = R \frac{\partial}{\partial R} \frac{1}{R} \frac{\partial}{\partial R}\right)$$

• Grad-Shafranov-like equation in plasma and external conductors

$$\sigma\mu_0\frac{\partial\psi}{\partial t} = \Delta^*\psi - \mu_0RJ_{\rm r} - \underbrace{\sigma\mu_0v_z\frac{\partial\psi}{\partial z}}_{\rm objects\ moving\ with\ }v_z$$

solve for time evolution of poloidal magnetic field!

Evolution of Runaway Current

$$\frac{1}{J_{\rm r}}\frac{\partial J_{\rm r}}{\partial t} \simeq \left(\frac{\langle E_{\varphi}\rangle}{E_{\rm c}} - 1\right) \left(\frac{\Theta(\langle E_{\varphi}\rangle - E_{\rm c})}{\tau_{\rm a}} + \frac{\Theta(E_{\rm c} - \langle E_{\varphi}\rangle)}{\tau_{\rm d}}\right)$$

- $E_{\rm c}$ critical field strength
 - exponential growth for $\langle E_{\varphi} \rangle > E_c$ by avalanche unconventional Ohm's law with avalanche time

$$\begin{split} \tau_{\rm a} &= \tau \ln \Lambda \sqrt{\frac{3(Z_{\rm eff} + 5)}{\pi \gamma(\epsilon)}} \left(1 - \frac{E_{\rm c}}{E} + \frac{4\pi (Z_{\rm eff} + 1)^2}{3\gamma(\epsilon)(Z_{\rm eff} + 5)(E^2/E_{\rm c}^2 + 4/\gamma^2(\epsilon) - 1)} \right)^{1/2} \\ \gamma &= (1 + 1.46\sqrt{\epsilon} + 1.72\epsilon)^{-1}, \quad \epsilon = r/R, \quad \tau_{\rm a} \text{ for } E \gg E_{\rm c} \end{split}$$

- exponential decay for $\langle E_{\varphi} \rangle < E_c$ by collisional damping $\tau_d = 2\tau \ln \Lambda$ electron collisional damping time
- radiation losses unimportant on time scales encountered here

NENDELSTEIN 7-X Self-Consistent Motion of Plasma

• plasma inertia is very small \Longrightarrow vertical force on plasma should vanish!

$$F_z = \int_{V_{\text{plas}}} (\mathbf{J} \times \mathbf{B}) \cdot \nabla z \ dV \stackrel{!}{=} 0$$

• with $\mathbf{J} = \mathbf{J}^{\mathrm{in}} + \mathbf{J}^{\mathrm{ex}}$ and $\mathbf{B} = \mathbf{B}^{\mathrm{in}} + \mathbf{B}^{\mathrm{ex}}$ there is (for large aspect ratio):

$$F_{z} = \int_{V_{\text{plas}}} \left(J_{R}^{\text{in}} B_{\varphi}^{\text{ex}} - J_{\varphi}^{\text{in}} B_{R}^{\text{ex}} \right) dV \simeq - \int_{V_{\text{plas}}} J_{\varphi}^{\text{in}} B_{R}^{\text{ex}} dV + O\left(\epsilon J_{R}^{\text{in}} B_{\varphi}^{\text{ex}}\right)$$

ullet iterative procedure to determine v_z for time step Δt :

move plasma as to obey condition $F_z(t + \Delta t) = 0$!

Energy Transfer to Runaway Electrons

• total energy transferred to plasma (background and runaway electrons)

$$W_{\rm plas} = \int_{0}^{t} dt' \int_{V_{\rm plas}} J_{\varphi} E_{\varphi} \, dV = \int_{0}^{t} dt' \int_{V_{\rm plas}} (\sigma E_{\varphi} + J_{\rm r}) \, E_{\varphi} \, dV = W_{\Omega} + W_{\rm r}$$

• energy lost by REs through collisional slowing-down on background

$$W_{E_{\rm c}} \approx \int\limits_{0}^{t} dt' \int\limits_{V_{\rm plas}} J_{\rm r} E_{\rm c} \ dV$$

• final kinetic RE energy (... which is going to strike the first wall!)

$$W_{
m RE} = W_{
m RE}^0 + \int_0^t dt' \int_{V_{
m plas}} J_{
m r}(E_{arphi} - E_{
m c}) \; dV \; = W_{
m RE}^0 + W_{
m r} - W_{E_{
m c}}$$

VENDELSTEIN 7-X Numerical Results - Plasma Motion

A reference case

 $I_{\rm P}^0 = 10 \,{\rm MA}$ (flat profile) $T \simeq 5 \,{\rm eV}$

- $n\simeq 10^{21}\,{\rm m}^{-3}$
- $I_{\rm PF1} = 0.84 \, I_{\rm P}^0$
- $\mathbf{A}^* \ I_{\mathrm{P}}^0$ with peaked profile
- **B** $I_{\rm PF1} = 1.25 \, I_{\rm P}^0$
 - initial displacement $\delta z = .25\,\mathrm{m}$
 - \bullet free-motion phase $z<2.1\,\mathrm{m}$
 - \bullet plasma hits wall at $z=2.1\,\mathrm{m}$
 - \bullet scrape-off phase $z>2.1\,{\rm m}$
 - \bullet plasma depleted at $z=4.1\,\mathrm{m}$

vertical position of plasma center z(t)

Numerical Results - RE Energy Gain vs. Time

A reference case

 $I_{\rm P}^0 = 10 \,\mathrm{MA}$ (flat profile) $T \simeq 5 \,\mathrm{eV}$ $n \simeq 10^{21} \,\mathrm{m}^{-3}$ $I_{\rm PF1} = 0.84 \,I_{\rm P}^0$

- $\mathbf{A}^* \ I_{\mathrm{P}}^0$ with peaked profile
- **B** $I_{\rm PF1} = 1.25 I_{\rm P}^0$
 - growth in scrape-off phase
 - $W_{\rm RE}^0 \sim 20 \,{\rm MJ}$
 - total $W_{\rm RE} \sim 100 \, {\rm MJ}$ possible
 - final values identical

kinetic energy gained by REs $(W_{
m RE}-W_{
m RE}^0)$ vs. t

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Numerical Results - RE Energy Gain vs. Position

A reference case

 $I_{\rm P}^0 = 10 \,\mathrm{MA}$ (flat profile) $T \simeq 5 \,\mathrm{eV}$ $n \simeq 10^{21} \,\mathrm{m}^{-3}$ $I_{\rm PF1} = 0.84 \,I_{\rm P}^0$

- $\mathbf{A}^* \ I_{\mathrm{P}}^0$ with peaked profile
- **B** $I_{\rm PF1} = 1.25 I_{\rm P}^0$
 - growth in scrape-off phase
 - $W_{\rm RE}^0 \sim 20 \,{\rm MJ}$
 - total $W_{\rm RE} \sim 100 \, {\rm MJ}$ possible
 - final values identical

kinetic energy gained by REs $(W_{
m RE}-W_{
m RE}^0)$ vs. z

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Energy Conversion in Fusion Plasmas with REs

- Putvinski et al., Plas. Phys. Contr. Fusion **39** (1997)
 ⇒ highest RE wall loads predicted for slow disruptions
- supported by simple 2-circuit model:

• energy gain for cases A and B found identical \implies contradiction?

WENDELSTEIN 7-X

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Numerical Results - Energy Contributions

A reference case

 $I_{\rm P}^0 = 10 \text{ MA}$ (flat profile) $T \simeq 5 \text{ eV}$ $n \simeq 10^{21} \text{ m}^{-3}$ $I_{\rm PF1} = 0.84 I_{\rm P}^0$

- **B** $I_{\rm PF1} = 1.25 I_{\rm P}^0$
 - \bullet total energy transfer $W_{\rm plas} \sim t$
 - friction (W_{E_c}) not negligible!
 - $\bullet \ \Delta W_{\rm RE}$ identical for A and B
 - in free motion $W_{\rm plas} \sim W_{E_{\rm c}}$
 - implications for E_{φ} ?

• reference case

Numerical Results - Electric Field Strength

electric field strength $\langle E_{\varphi} \rangle / E_{\rm c}$ vs. (ϱ/a) 45

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Electric Field Strength Estimate

 $\langle E_{\varphi} \rangle \approx E_{c}$ in most of the plasma is characteristic feature!

• there must be (displacement current neglected):

$$\nabla^2 E = \mu_0 \frac{\partial J_{\varphi}}{\partial t} \quad \text{with} \quad J_{\varphi} = J_r \quad \text{and} \quad \frac{\partial J_r}{\partial t} \simeq \frac{J_r}{\tau_a} \left(\frac{E}{E_c} - 1\right)$$

• if $J_{\varphi} = J_r \quad \text{with} \quad \partial J_r / \partial t \simeq J_r \left(\frac{E}{E_c} - 1\right) / \tau_a$

• then:

$$a^2 \nabla^2 E = \frac{a^2 \mu_0 J_{\rm r}}{\tau_{\rm a} E_{\rm c}} (E - E_{\rm c})$$

• estimate r.h.s.:

$$\frac{a^2 \mu_0 J_{\rm r}}{\tau_{\rm a} E_{\rm c}} (E - E_{\rm c}) \sim \frac{\mu_0 I_{\rm r}}{\pi \tau_{\rm a} E_{\rm c}} (E - E_{\rm c}) \approx \frac{I_{\rm r}}{0.2 \,{\rm MA}} (E - E_{\rm c})$$

• since $I_r \gg 0.2 \text{ MA}$ there follows $E \approx E_c$ or $(a^2 \nabla^2 E)/E \gg 1$ (plasma edge) \implies use full expression for τ_a ! Max-Planck-Institut für Plasmaphysik, EURATOM Association

WENDELSTEIN 7-X

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Numerical Results - Parameter Dependence

A reference case

parameter dependence of RE energy gain

WENDELSTEIN 7-X

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Numerical Results - Scrape-off Loss Power

A reference case

 $I_{\rm P}^0 = 10 \,\mathrm{MA}$ (flat profile) $T \simeq 5 \,\mathrm{eV}$ $n \simeq 10^{21} \,\mathrm{m}^{-3}$ $I_{\rm PF1} = 0.84 \,I_{\rm P}^0$

$$P \approx (2\pi)^2 R_0 \, \varrho \, n_{\rm r}^{\rm edge} v_z \, (mc^2 \ln \Lambda)$$

- onset with scrape-off phase
- strong peak (... can be worse!)
- size of wall fragment?
- severe damage to walls!

no material can withstand GW/m^2

scrape-off loss power P(t)

Summary

- 2D model for energy conversion under disruption presented
- earlier qualitative results by other authors confirmed
- substantial conversion of magnetic energy during disruptions
- \bullet final RE energies of up to $\sim 100\,{\rm MJ}$ possible
- two qualitatively different phases of plasma motion found
- energy mainly consumed by friction in free-motion phase
- strong energy gain by REs during scrape-off phase

RE suppression/control/mitigation is a key topic for ITER!

(submitted to Physics of Plasmas)